Python 异步 IO

异步IO

CPU的速度远远快于磁盘、网络等IO。在一个线程中,CPU执行代码的速度极快,然而,一旦遇到IO操作,如读写文件、发送网络数据时,就需要等待IO操作完成,才能继续进行下一步操作。这种情况称为同步IO。
在IO操作的过程中,当前线程被挂起,而其他需要CPU执行的代码就无法被当前线程执行了。
因为一个IO操作就阻塞了当前线程,导致其他代码无法执行,所以我们必须使用多线程或者多进程来并发执行代码,为多个用户服务。每个用户都会分配一个线程,如果遇到IO导致线程被挂起,其他用户的线程不受影响。
多线程和多进程的模型虽然解决了并发问题,但是系统不能无上限地增加线程。由于系统切换线程的开销也很大,所以,一旦线程数量过多,CPU的时间就花在线程切换上了,真正运行代码的时间就少了,结果导致性能严重下降。
由于我们要解决的问题是CPU高速执行能力和IO设备的龟速严重不匹配,多线程和多进程只是解决这一问题的一种方法。
另一种解决IO问题的方法是异步IO。当代码需要执行一个耗时的IO操作时,它只发出IO指令,并不等待IO结果,然后就去执行其他代码了。一段时间后,当IO返回结果时,再通知CPU进行处理。
可以想象如果按普通顺序写出的代码实际上是没法完成异步IO的,异步IO模型需要一个消息循环,在消息循环中,主线程不断地重复“读取消息-处理消息”这一过程。
在“发出IO请求”到收到“IO完成”的这段时间里,同步IO模型下,主线程只能挂起,但异步IO模型下,主线程并没有休息,而是在消息循环中继续处理其他消息。这样,在异步IO模型下,一个线程就可以同时处理多个IO请求,并且没有切换线程的操作。对于大多数IO密集型的应用程序,使用异步IO将大大提升系统的多任务处理能力。

协程

协程,又称微线程,纤程。英文名Coroutine。
子程序,或者称为函数,在所有语言中都是层级调用,比如A调用B,B在执行过程中又调用了C,C执行完毕返回,B执行完毕返回,最后是A执行完毕。
所以子程序调用是通过栈实现的,一个线程就是执行一个子程序。
子程序调用总是一个入口,一次返回,调用顺序是明确的。而协程的调用和子程序不同。
协程看上去也是子程序,但执行过程中,在子程序内部可中断,然后转而执行别的子程序,在适当的时候再返回来接着执行。
注意,在一个子程序中中断,去执行其他子程序,不是函数调用,有点类似CPU的中断。比如子程序A、B,但是在A中是没有调用B的,所以协程的调用比函数调用理解起来要难一些。
看起来A、B的执行有点像多线程,但协程的特点在于是一个线程执行,那和多线程比,协程有何优势?
最大的优势就是协程极高的执行效率。因为子程序切换不是线程切换,而是由程序自身控制,因此,没有线程切换的开销,和多线程比,线程数量越多,协程的性能优势就越明显。
第二大优势就是不需要多线程的锁机制,因为只有一个线程,也不存在同时写变量冲突,在协程中控制共享资源不加锁,只需要判断状态就好了,所以执行效率比多线程高很多。
因为协程是一个线程执行,那怎么利用多核CPU呢?最简单的方法是多进程+协程,既充分利用多核,又充分发挥协程的高效率,可获得极高的性能。
Python对协程的支持是通过generator实现的。
生产者生产消息后,直接通过yield跳转到消费者开始执行,待消费者执行完毕后,切换回生产者继续生产,效率极高:

def consumer():
    r = ''
    while True:
        n = yield r
        if not n:
            return
        print('[CONSUMER] Consuming %s...' % n)
        r = '200 OK'

def produce(c):
    c.send(None)
    n = 0
    while n < 5:
        n = n + 1
        print('[PRODUCER] Producing %s...' % n)
        r = c.send(n)
        print('[PRODUCER] Consumer return: %s' % r)
    c.close()

c = consumer()
produce(c)

执行结果:

[PRODUCER] Producing 1...
[CONSUMER] Consuming 1...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] Producing 2...
[CONSUMER] Consuming 2...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] Producing 3...
[CONSUMER] Consuming 3...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] Producing 4...
[CONSUMER] Consuming 4...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] Producing 5...
[CONSUMER] Consuming 5...
[PRODUCER] Consumer return: 200 OK

注意到consumer函数是一个generator,把一个consumer传入produce后:

  1. 首先调用c.send(None)启动生成器;
  2. 然后,一旦生产了东西,通过c.send(n)切换到consumer执行;
  3. consumer通过yield拿到消息,处理,又通过yield把结果传回;
  4. produce拿到consumer处理的结果,继续生产下一条消息;
  5. produce决定不生产了,通过c.close()关闭consumer,整个过程结束。

整个流程无锁,由一个线程执行,produce和consumer协作完成任务,所以称为“协程”,而非线程的抢占式多任务。

asyncio

Python实现异步IO非常简单,asyncio是Python 3.4版本引入的标准库,直接内置了对异步IO的支持。
asyncio的编程模型就是一个消息循环。我们从asyncio模块中直接获取一个EventLoop的引用,然后把需要执行的协程扔到EventLoop中执行,就实现了异步IO。
用asyncio的异步网络连接来获取sina、sohu和163的网站首页代码如下:

import asyncio

@asyncio.coroutine
def wget(host):
    print('wget %s...' % host)
    connect = asyncio.open_connection(host, 80)
    reader, writer = yield from connect
    header = 'GET / HTTP/1.0\r\nHost: %s\r\n\r\n' % host
    writer.write(header.encode('utf-8'))
    yield from writer.drain()
    while True:
        line = yield from reader.readline()
        if line == b'\r\n':
            break
        print('%s header > %s' % (host, line.decode('utf-8').rstrip()))
    # Ignore the body, close the socket
    writer.close()

loop = asyncio.get_event_loop()
tasks = [wget(host) for host in ['www.sina.com.cn', 'www.sohu.com', 'www.163.com']]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()

执行结果如下:

wget www.sohu.com...
wget www.sina.com.cn...
wget www.163.com...
(等待一段时间)
(打印出sohu的header)
www.sohu.com header > HTTP/1.1 200 OK
www.sohu.com header > Content-Type: text/html
...
(打印出sina的header)
www.sina.com.cn header > HTTP/1.1 200 OK
www.sina.com.cn header > Date: Wed, 20 May 2015 04:56:33 GMT
...
(打印出163的header)
www.163.com header > HTTP/1.0 302 Moved Temporarily
www.163.com header > Server: Cdn Cache Server V2.0
...

@asyncio.coroutine把一个generator标记为coroutine类型,然后,我们就把这个coroutine扔到EventLoop中执行。
yield from语法可以让我们方便地调用另一个generator。所以线程不会等待IO操作,而是直接中断并执行下一个消息循环。当yield from返回时,线程就可以从yield from拿到返回值,然后接着执行下一行语句。
在此期间,主线程并未等待,而是去执行EventLoop中其他可以执行的coroutine了,因此我们用Task封装的三个coroutine可以实现由同一个线程并发执行。

async/await

为了简化并更好地标识异步IO,从Python 3.5开始引入了新的语法async和await,可以让coroutine的代码更简洁易读。
使用新语法,只需要做两步简单的替换:

  1. 把@asyncio.coroutine替换为async;
  2. 把yield from替换为await。

用新语法重新编写上一节的代码如下:

import asyncio

async def wget(host):
    print('wget %s...' % host)
    connect = asyncio.open_connection(host, 80)
    reader, writer = await connect
    header = 'GET / HTTP/1.0\r\nHost: %s\r\n\r\n' % host
    writer.write(header.encode('utf-8'))
    await writer.drain()
    while True:
        line = await reader.readline()
        if line == b'\r\n':
            break
        print('%s header > %s' % (host, line.decode('utf-8').rstrip()))
    # Ignore the body, close the socket
    writer.close()

loop = asyncio.get_event_loop()
tasks = [wget(host) for host in ['www.sina.com.cn', 'www.sohu.com', 'www.163.com']]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()

剩下的代码保持不变。

aiohttp

asyncio实现了TCP、UDP、SSL等协议,aiohttp则是基于asyncio实现的HTTP框架。
安装aiohttp:

pip install aiohttp

然后编写一个HTTP服务器,分别处理以下URL:

  • / – 首页返回b'<h1>Index</h1>’;
  • /hello/{name} – 根据URL参数返回文本hello, %s!。

代码如下:

import asyncio

from aiohttp import web

async def index(request):
    await asyncio.sleep(0.5)
    return web.Response(body=b'<h1>Index</h1>')

async def hello(request):
    await asyncio.sleep(0.5)
    text = '<h1>hello, %s!</h1>' % request.match_info['name']
    return web.Response(body=text.encode('utf-8'))

async def init(loop):
    app = web.Application(loop=loop)
    app.router.add_route('GET', '/', index)
    app.router.add_route('GET', '/hello/{name}', hello)
    srv = await loop.create_server(app.make_handler(), '127.0.0.1', 8000)
    print('Server started at http://127.0.0.1:8000...')
    return srv

loop = asyncio.get_event_loop()
loop.run_until_complete(init(loop))
loop.run_forever()

注意aiohttp的初始化函数init()也是一个coroutine,loop.create_server()则利用asyncio创建TCP服务。

发表评论